Multiple catalytic functions of brain nitric oxide synthase. Biochemical characterization, cofactor-requirement, and the role of N omega-hydroxy-L-arginine as an intermediate.

نویسندگان

  • P Klatt
  • K Schmidt
  • G Uray
  • B Mayer
چکیده

Brain NO (nitric oxide) synthase contains FAD, FMN, heme, and tetrahydrobiopterin as prosthetic groups and represents a multi-functional oxidoreductase catalyzing oxidation of L-arginine to NO and L-citrulline, formation of H2O2, and reduction of cytochrome c. We show that substrate analogues and inhibitors interacting with the heme block both the reductive activation of oxygen and the oxidation of L-arginine without affecting cytochrome c reduction. We further demonstrate that N omega-hydroxy-L-arginine is an intermediate in enzymatic NO synthesis. The ratio of L-citrulline to free N omega-hydroxy-L-arginine was > or = 50 under various assay conditions, but could markedly be reduced down to 4 by redox active inhibitors. Brain NO synthase is shown to utilize both L-arginine and N omega-hydroxy-L-arginine for the formation of stoichiometric amounts of NO and L-citrulline. Tetrahydrobiopterin equally enhanced reaction rates from either substrate (approximately 5-fold), but its rate accelerating effects were only observed at NADPH concentrations > or = 3 microM. In the absence of L-arginine or tetrahydrobiopterin, brain NO synthase catalyzes the generation of H2O2. We now show that, in contrast to L-arginine, N omega-hydroxy-L-arginine fully blocked H2O2 formation in the absence of exogenous tetrahydrobiopterin, indicating that N omega-hydroxy-L-arginine is a direct inhibitor of enzymatic oxygen activation. Based on these data, a hypothetical mechanism of enzymatic NO formation is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages

Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...

متن کامل

Nitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases

Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...

متن کامل

The Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation

Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...

متن کامل

Arginase Activity and Its Effects on Pathogenesis of Leishmania

  Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...

متن کامل

Nitroarginine and tetrahydrobiopterin binding to the haem domain of neuronal nitric oxide synthase using a scintillation proximity assay.

Nitric oxide synthases (NOS) have a bidomain structure comprised of an N-terminal oxygenase domain and a C-terminal reductase domain. The oxygenase domain binds haem, (6R)-5,6,7,8-tetrahydro-l-biopterin (tetrahydrobiopterin) and arginine, is the site where nitric oxide synthesis takes place and contains determinants for dimeric interactions. A novel scintillation proximity assay has been establ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 20  شماره 

صفحات  -

تاریخ انتشار 1993